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ABSTRACT OF THESIS

3D Body Tracking using Deep Learning

This thesis introduces a 3D body tracking system based on neutral networks and 3D
geometry, which can robustly estimate body poses and accurate body joints. This
system takes RGB-D data as input. Body poses and joints are firstly extracted from
color image using deep learning approach. The estimated joints and skeletons are
further translated to 3D space by using camera calibration information. This system
is running at the rate of 3 4 frames per second. It can be used to any RGB-D
sensors, such as Kinect, Intel RealSense [14] or any customized system with color
depth calibrated. Comparing to the sate-of-art 3D body tracking system, this system
is more robust, and can get much more accurate joints locations, which will benefits
projects require precise joints, such as virtual try-on, body measure, real-time avatar
driven.
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Chapter 1 Introduction

Human body tracking is an important research area in computer vision, which has
many applications, like human-computer interaction, gaming, making movie, security,
telepresence, view synthesis. Virtual reality (VR) and augment reality (AR) are
developing very fast in recent few years, which also need body tracking. At the
beginning, human body was treated as a whole component, which can only track
where the person goes. Now, we also want to know what the person is doing. So it
is needed to recognize the person’s poses and actions.

Nowadays, there are many ways to track a human body. Kinect sensor can track
up to 6 people at a time and can track 2 users in details like skeletal joints and orienta-
tions, and hand states. A RGB color camera and 3D depth sensor (including infrared
camera and infrared emitters) are built in the Kinect. Kinect first compute depth
map from the infrared image, and then detect body joints by using a randomized
decision forest, learned from over 1 million training examples [29].

Although Kinect can track human body in real time, it cannot tell whether a
person in the view is facing or showing back to the camera. So in practice, this
shortcoming will restrict the popularity in applications that user may turn around.
Besides that, Kinect cannot detect the joints very accurately. In figure 1.1, the left
image shows Kinect will fail when user turn around, and the right image shows the
two knees are not detected very accurate.

Figure 1.1: Joints detection example by Kinect.

Cao et al. [9] present a near real time pose estimation using deep learning. It can
produce much more accurate joints detection results, but it’s 2D based body tracking.
Obviously, 3D body tracking is more useful than 2D tracking. Many applications,
like view synthesis and motion sensing games, can benefit from accurate 3D body
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tracking. Therefore, I want to build up a 3D body tracking system which can detect
human body joint more accurate than Kinect.

There are many existing body tracking techniques [35, 26, 24, 10, 7, 4]. . I choose
to use the deep learning method presented in [9], because it can produce stae-of-art
joints detection results and it is faster than others.

Inspired by [9], I want to detect joints in 2D space and then convert the detected
results into 3D. I choose Kinect as the input device, because Kinect can provide 2D
color images which can be used for joints detection and depth images which can be
used for 3D model reconstruction.

The thesis is organized in the following order. Chaper 2 introduces all the back-
ground technologies that used in the system. Chapter 3 simply shows the how to
design and setup the system. In Chapter 4, a lot of implementation details are dis-
cussed. Chapter 5 shows some results of the system and Chapter 6 conclude the
thesis.

Copyright c© Qingguo Xu, 2017.
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Chapter 2 Related work

Although body tracking has many applications in computer vision and many existing
techniques, it is still not easy to track the body very accurately.

Some motion capture (mocap) and tracking systems can provide accurate tracking
result, but will need special markers, like OptiTrack[25]. Those maker-based system
do have some strengths, such as accuracy, reliability and speed. But it has more
drawbacks. First it will need special makers and suits, if some markers are occluded,
the results cannot be guaranteed. The system setup is also very expensive. The
system need careful calibration by experts.

Modern markerless motion capture use advanced computer vision technology to
identify and track subjects without the need for any markers. There are some top-
down methods [31, 12, 27] to employ a person detector first and then perform single-
person pose estimation. Since there are existing single-person pose estimation tech-
niques [35, 26, 24, 10, 7, 4], those top-down methods can directly use them. Besides
the bottleneck of the pose estimation, those top-down methods depend on the accu-
racy of person detector. If person detector fails, they cannot track the human body
successfully.

Body tracking can be divided into 2 categories: 2D-based body tracking and 3D-
based body tracking. At first, body tracking was applied on 2D images and videos
sequences. There are many techniques that can be used for body joints detection and
tracking. [17, 22, 3] take advantage of Kalman filter. [28] can estimate 2D human
pose from video using optical flow. While recently, deep learning is also used for pose
estimation and body tracking [5, 9]. The advantage of using deep learning is it can
produce accurate and near realtime result.

3D-based body tracking has much more applications and more useful. Many
previous research are focus on 3D body tracking. Mao et al. [36] can estimate 3D
pose very accurately just using a single depth image. A set of pre-captured motion
exemplars are need to be matched with the input depth image. It will first estimate a
pose and then refine it by directly fitting the body configuration with the input depth.
Roland et al. [21] present a method that use stochastic sampling to track full body
from multiple view. A volumetric reconstruction of a person will be extracted from
silhouettes in multiple video images. Then an articulated body model will be fitted
to the data with stochastic meta descent optimization. Cheung et al. [11] present a
shape-from-shilhouette method for body tracking. Colored surface points are used to
segment the hull into rigidly body parts, based on the results of the previous frames.
The constraint of equal motion of parts at their coupling joints are used for estimating
joints positions.

Although 3D body tracking is much more useful than 2D, the computing cost
is also more expensive than 2D tracking. To reduce computing cost, deep learning
based methods are introduced for body tracking and pose estimation. Both [33] and
[16] estimate human pose using convolutional networks. Arjun et al. from [16] also
present that a specific variation of deep learning is able to outperform all existing
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traditional architectures on this task. [9] can produce very accurate joints position on
2D images using deep learning and it is close to realtime. All these works are using
deep learning on 2D images. Deep learning should also work on 3D body tracking,
but the biggest problem is that there is no such 3D pose database that can be used
to train deep learning network.

Copyright c© Qingguo Xu, 2017.
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Chapter 3 Background

3.1 Convolutional Neural Network (CNN)

Deep learning is a class of machine learning algorithm that have many layers and
getting more and more attention these days. Although it may takes very long time to
train a meaningful model, deep learning can provide very impressive results. Convo-
lutional Neural Network (CNN) is the most basic and popular deep learning network.
CNN is used in this project, so I will talk about more details about CNN. Before
talking about CNN, I need to introduce ANN first. Artificial Neural Network (ANN)
is developed to help computer ”think” as a human being. An ANN consists of nodes
in different layers: input layer, hidden layer and output layer. Every basic unit in the
network is called a neuron, or a node. The neuron can receive input from external
source (in input layer) or some other neurons (in hidden/output layer) and can com-
pute an output[19]. Figure 3.1 shows a single neuron takes inputs X1 and X2 with
weights w1 and w2 respectively. Additionally, there is another input 1 with weights
b, which is called bias. The output is computed as Y = f(w1.X1 + w2.X2 + b)
and the function f is called activation function and it’s non-linear. The purpose of
function f is to introduce non-linear into the output, since most real world data is
non-linear. There are 3 most common non-linear functions: Sigmoid, tanh, and ReLU
(Rectified Linear Unit). Figure 3.2 shows the 3 activation functions. Sigmoid takes a
real-valued input and maps it to range between 0 and 1. tanh function squashes the
input to the range [-1,1]. ReLU threshold the input value at zero. ReLU is the one I
use and its equation is as follow.

f(x) = max(0, x)

Convolutional Neural Networks are a category of Neural Networks that are proven
very effective in image recognition and classification[20]. CNN have been successful
in identifying faces, objects and traffic signs. Figure 3.3 shows a simple CNN and
classifies an input image into four categories (outputs). There are 4 main operations
in Figure 3.3: convolution, ReLU, pooling and classification (Fully connected layer).

In this thesis, I introduce 2D convolution applied on 2D images. Every image
can be considered as a 2D matrix of pixel values and the pixel value range from 0
to 255. To apply convolution on image matrix, a small 2D matrix (called kernel or
filter) is needed. Every time the filter scan the image matrix, we can get a convolved
image matrix, which is called feature map. If we apply different filters on the same
image, we can get different feature maps. Therefore, the more filters, the more image
features can be extracted and the better performance the CNN can perform. In
practice, a Convolutional Neural Network can learn the values of filters on its own
during the training process[20]. During the convolution process, the size of feature
map is controlled by 3 parameters[34]: depth, stride and zero-padding. Depth is the
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Figure 3.1: A single neuron. Source[19]

Figure 3.2: Different activation functions. Source[19]

number of filters used for convolution operation. As discussed above, more filters
means more feature maps; Stride is the number of pixels by which we slide the filter.
Sometime, we need to apply filters to bordering elements of the input images, so it’s
very convenient to pad zeros around the input images’ border.

ReLU stands for Rectified Linear Unit and it’s a non-linear operation as shown in
Figure 3.2. This is an element wise operation and it will replace all negative values
with zero. After the ReLU operation applied on feature map, the output is Rectified
feature map and non-linearity is introduced in the CNN.

Pooling is also called subsampling or downsampling. It reduces the dimension of
each (rectified) feature map but retains the most important information. There are
many different types of pooling, such as Max, Average, Sum etc. In practice, Max
pooling has been shown to work better and it’s the pooling method I use. Figure 3.4
can show the process of Max pooling very clearly.

At the end of CNN are the fully connected layers. The fully connected layer

6
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Figure 3.3: A simple CNN. Source[20]

Figure 3.4: Max pooling. Source[34]

is a traditional Multi Layer Perceptron (MLP) which contains one or more hidden
layers. For the fully connected layer, every neuron in the previous layer is connected
to every neuron on the next layer. The purpose of the fully connected layer is to use
the outputs of convolutional and pooling layers for classifying the input image into
various classes based on the training dataset. Besides classification, adding a fully
connected layer in CNN is also a cheap way to learn non-linear combinations of the
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features from convolutional and pooling layers. Combinations of those features might
perform even better than use those features directly.

Figure 3.5: Student marks (a backpropagation example). Source[19]

3.2 Backpropagation

Backpropagation is used in ANN to calculate the gradient of the loss function with
respect to the weights [2]. Backward propagation of errors is one of the several ways in
which an artificial neural network (ANN) can be trained. It’s a supervised training,
which means, it learns from labeled training data. The labeled data works as the
groundtruth, so it’s like a supervisor guiding ANN to learn from errors. Because for
each input in the training dataset, the output is known.

How does the Backpropagation algorithm work? First, all the edge weights are
initialized randomly. Then for every entry in the training dataset, the ANN is ac-
tivated and its output will be compared with the known output. The error will be
propagated back to the previous layers to calculate the gradients. Then we can use
an optimization method such as Gradient Descent to adjust all the weights in the
network aiming to reduce the error at the output layer. This process will be repeated
until the output error is small enough or below a predetermined threshold.

There is a good example to help understand backpropagation. There is a student
marks datasheet in Figure 3.5. Now I need to predict whether a new coming student
with 25 hours study and 70 midterm marks will pass or fail.

We can use follow equation to calculate the output, which f is an activation
function.

V = f(1 ∗ w1 + 35 ∗ w2 + 67 ∗ w3)

Suppose we get the outputs of 2 output layer nodes are 0.4 and 0.6 respectively.
Figure 3.6 shows the process. The outputs are far from desired probabilities (1 and
0).

Since there are 5 entries, we will calculate the total error at the output layer. Then
we will propagate these errors back through the network using backpropagation to
calculate gradients. We can use gradient descent to adjust all the weights (new weights
are w3, w4, w5). By doing so, the error at the output layer will reduce. Figure 3.7
shows the procedure.

8
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Figure 3.6: Forward propagation step. Source[19]

Figure 3.7: Backward propagation step. Source[19]

After backpropagation, we can use equation V = f(1 ∗ w1 + 35 ∗ w2 + 67 ∗ w3)
to calculate output and the output error of output layer will be reduced. Like shown
in Figure 3.8, the output are closer to the desired output than the first time. If the
error are acceptable, then the network is trained and we can use it to predict the new
coming student’s final grade.

Figure 3.8: After update weights. Source[19]

3.3 Caffe

Caffe[18] is a deep learning framework and it’s developed by Berkeley AI Research
(BAIR)/The Berkeley Vision and Learning Center (BVLC). Models and optimization
are defined by configuration without hard-coding[8]. So only with a few modification
in the configuration, a different neural network will be created. There is a single flag
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to help switch between CPU and GPU. So it can be trained on a GPU machine and
then deployed on other commodity clusters or mobile devices. Caffe is written in
clean, efficient C++ with CUDA used for GPU computation and Python and Matlab
interface. Although it was developed on Linux, Caffe can run on most operating
systems, such as Ubuntu, RHEL, CentOS, OS X and Windows.

Figure 3.9: An MNIST digit classification example of Caffe network. Source[18]

Caffe stores and communication in 4-dimensional array called blobs [18]. A Caffe
layer is the essence of a neural network layer. It takes one or more blobs as input
and output one or more blobs to next layer. Layers have two key responsibilities: a
forward pass that take inputs and produce the outputs, and a backward pass that
execute BackPropagation algorithm, which is discussed above. Caffe also provides
a complete set of layer types, including convolution, pooling, inner products, non-
linearities (like ReLU and logistic), element-wise operation, and losses (like softmax
and hinge). Figure 3.9 shows an example Caffe network used to classify MNIST
digit. The yellow octagons are the data blobs produced or fed into layers. The blue
rectangles are different layers. There is one input layer at the left and one output
layer at the end. In the middle part, there are 7 hidden layers, including 2 convolution
layers, 2 pooling layers, 2 inner product layers and 1 non-linearity layer (ReLU). In
this figure, Backpropagation algorithm is not shown.

Copyright c© Qingguo Xu, 2017.
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Chapter 4 System overview

4.1 Design

The whole system contains 3 main components: data capture, data process, and
result display. The inputs of joints detection is a 2D color image, but to reconstruct
the 3D model, I also need a depth image. It will be more efficient for reconstruction
if human body mask is also provided. Therefore, I totally need 3 type images: color
image, depth image, and body mask. Based on these, I choose Kinect as the input
device. Then I also need a Windows PC and a working Caffe network on Windows.
Figure 4.1 shows the workflow of the system.

Figure 4.1: System workflow.

4.2 Setup

The hardware includes a Kinect mounted to a tripod and a PC machine. Figure
4.2 shows all the hardware that needed in the system. Because I need to stream
image data from Kinect, so I deploy my code on a desktop running Windows 10.
The desktop has i7-7700K @4.20Ghz, a 32GB RAM memory and the graphic card is
GTX 1070 with GPU capability 6.1. To run Caffe, the graphic card at least has GPU
capability 3.0. The operating system is 64-bits Windows 10. With this configuration,
the system can process 3 4 frames per second. The bottleneck is the joints detection
part. If there are more than one GPU device or more powerful GPU, the performance
can be better.

11
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Figure 4.2: System setup.

By using Kinect sensors, RGB color images, depth images and mask images can
be obtained. Instead of using raw color image, which is 1920x1080, I preprocess the
depth and color images, so that for each frame, color image and depth image are
pixel-wise corresponded. Then the processed color image, which is 512x424, will be
used to detect joints by using deep learning. The deep learning part can provide
all the joints information on the 2D color image. Since depth image is coordinated
with color image, so the joints should also be the same position in the depth image.
Both the depth images and joints can be transformed to points cloud in 3D space
by divided by the intrinsic matrix. Once get the 3D points cloud, meshes can be
produced by triangulation. Once all the information are ready and will be rendered
by OpenGL. I will discuss more details about the three components in next chapter.

12
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Chapter 5 System implementation

5.1 Data buffer

This whole system is a multi-thread program, so an important thing is to deal with
buffers. Because efficient data transfer can improve the system performance. There
are four buffers among main components. The first one is used to cache data from
Kinect. Because Kinect stream images faster than the processing procedure, there
are many frames will be cached in the buffer.I implemented two kinds of buffer for
this part, as shown in Figure 5.1. The first one is for live demo. It can cache constant
number of frames, for example (10 frames in the thesis). Since the Kinect can provide
more than 10 frames every second, some frames will be dropped, but it can track user’s
latest pose in 2 seconds. The second one is no limit number of frame and is used
for no-drop frames. Because it will cache all the frames since the program start, the
buffer will increase with time. This buffer will cost a lot of memory and it will crash
once there is no more memory to allocate. I also try another solution. Since the
bottleneck is the joints detection and it can only process 3 4 frames every second. So
I can write the streaming image to the disk drive and read it into the memory when
needed. It will not use too much memory, but need large disk space, moreover, the
extra write and read process will decrease the whole performance. The second buffer
is cache the output of joints detection. In practical, the OpenGL rendering procedure
can process faster than the joints detection, so there I also just set the frame buffer
number as 10, the same as the first buffer. The third and fourth buffer are used to
store depth image and mask image respectively. These two images are used for 3D
body model reconstruction.

Figure 5.1: System buffer.

I also setup several flags to control dataflow. READ FLAG is to decide whether
should capture data from Kinect or not; PROCESSED FLAG shows joints detection
components can read data from buffer or not; RENDER FLAG to indicates is there
any result to be display or not. Those flags help control the system work flow.

5.2 Compile Caffe on Windows

Although it’s easy to setup Caffe on Linux, I have to setup it on Windows with
Visual studio 2013, because I need Kinect to capture images. There are several third
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party dependencies that needed by Caffe, such OpenCV, CUDA, Boost, OpenBLAS,
GFlags, Glog, ProtoBuf, and LevelDB. I tried very long time to compile Caffe on
Windows, and finally follow Neil’s blog[6], I setup Caffe successfully on Windows. I
use OpenCV2.4.11, not OpenCV3, because the joints detection part only works with
OpenCV2. The latest CUDA8.0 at that moment. Because the difference between
Linux system library and Window’s library, there are a lot of compiling errors during
this procedure, like method close() in Linux is corresponding to close() in Windows.

5.3 Data streaming

Kinect can provide 6 data sources: ColorFrameSource, DepthFrameSource, BodyFrame-
Source, InfraredFrameSource, BodyIndexFrameSource, AudioSource. I only need
first 3 data source. To get the 3 type image data, should follow this procedure
”Sensor – Source – Reader – Frame – Data”. The Sensor only need to open once,
but the other steps are need to be went through for every data source. Based on
an example in the Kinect SDK V2.0, naming ”Coordinate Mapping Basics-D2D”,
I can get pretty clean mask images and color images which are pixel-wise coordi-
nated with depth images. After the coordinating operation, the color image will
be resized from 1920x1080 to 512x424. Although Kinect SDK provide a method
(MapDepthFrameToColorSpace()) can do that, if the depth image and the color
image are not aligned well, we can calibrate the depth camera and color camera re-
spectively and get two RT matrices. Based on the two RT matrices, for each pixel
on the depth image, we can find corresponding pixel on the color image. That’s how
we implement the mapping function by our own.

Smaller color image means more images can be loaded to GPU, so the performance
will be better. On the other hand, joints detected on the color images will be in the
same location on the depth images. Figure 5.2 show an example. The left column are
the preprocessed color image and its corresponding depth image. The right column
shows that joints detected on the color image will be at the same location of depth
image.

5.4 Detect joints on 2D color image

Zhe Cao et al. present an efficient approach to detect the 2D pose in an image[9]. I
use their network and trained model as in [9]. Their system is originally developed on
Linux and only for 2D data, but I transport the codes to Windows 10 and tracking
body in 3D space.

Human 2D pose estimation is the problem of finding anatomical keypoints or
joints. A common top-down way [31, 12, 27] is to apply a person detector first and
then perform person pose estimation. But if the person detector fails, there is no
way to do the pose estimation. Zhe Cao et al. [9] present an efficient method for
pose estimation with state-of-the-art accuracy on multiple public benchmarks. It’s a
bottom-up method and support multi-person pose estimation. Unlike the top-down
methods whose runtime is proportional to the number of people in the image, Zhe’s
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Figure 5.2: Color image is pixel-wise corresponded to depth image.

method can decouple runtime complexity from the number of people. I didn’t handle
multiple person right now, but I do need their high accuracy in joints detection.

Figure 5.3 shows essential part of the architecture of the deep learning network,
which is a two branch multi-stage CNN. There are different numbers and different size
convolution layers in each stage. The input of the first stage of each branch is a set of
feature maps F , which can be extracted by applying convolution, non-linearity and
pooling. Each input image will be analyzed by a convolutional network to generate
a set of feature maps F . The convolutional network is initialized by the first 10
layers of VGG-19 [30]. Figure 5.4 is the actual architecture of the system. There
are 10 convolution layers, 10 ReLU layers and 3 pooling layers before the two-branch
multi-stage CNN. In this project, there are 6 stage two-branch CNN.

About the two branches, one is for joints detection and the other one is for joints
association. I only need the joints detection part and associate joints by predefined
relationship. Although the joints are detected on the color image, since the depth
image is pixel-wise corresponded with color image, as shown in figure 5.2. So all the
detected joints will also be known on the depth image.

5.5 Convert 2D depth to 3D

After the joints detection, joints positions will also be known on the depth image. I
use the built-in camera intrinsic parameters to generate 3D points cloud. The joints
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Figure 5.3: Architecture of the two-branch multi-stage CNN. Source[9]

will also be converted to 3D space, called depth2pointmap().

KK =

365.5953 0.0 260.1922
0.0 365.5953 209.5835
0.0 0.0 1.0


To make the conversion more efficient, mask images are used in this procedure. Be-
cause a whole depth map also includes background, not just human body. So with
the mask, I can only convert depth map which is inside the mask to points cloud.
Kinect produce mask image based on depth threshold.

Once have all the 3D points, it’s easy to generate 3D mesh by connect every 3
closest points, called pointmap2mesh(). To make sure there is no noise points, an
extra operation (RemoveLongFaces()) is needed. Because some noise points are far
away from the main point clouds, but during the pointmap2mesh(), the noise points
will also be connected to other points, so these faces are long faces and noise faces,
which should be removed. After the RemoveLongFaces(), a clean mesh is ready to
render out.

5.6 2D joints to 3D joints

Although detected 2D joints can also be projected to 3D space using the same depth
value as the same (x, y) location on the depth map. To make sure all the joints can
be rendered on the mesh, I also did some extra work. Although the detected joints
are in the 3D space, but maybe they are not exactly on the produced mesh. To
make sure that, a ray is shot through a joint and should intersect with the mesh, the
intersection is the new location of that joint. But there may be some depth value
missing on the depth map , which means there may be some holes on the produced
mesh. In that case, the ray will not intersect with the mesh. If that happens, I choose
use the original detected joints location.
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5.7 Render 3D mesh with OpenGL

OpenGL is short for Open Graphics Library, and is a cross-platform application pro-
gramming interface (API) for rendering 2D and 3D graphics. Freeglut is a third
party library that implements all the OpenGL interfaces and it supports for 64-bits
application program. To use OpenGL, first need to initialize the OpenGL environ-
ment by calling glutInit(), then need create a OpenGL window to show the ren-
dered results by glutCreateWindow(). After setting the display function handler by
glutDisplayFunc(), glutMainLoop() need to be called to start rendering. Since the
mainLoop is a infinity loop and the display function will be called every iteration.

The color image will also be used in this procedure as a rendering texture. After
adding texture to the 3D mesh, the 3D human body model will be more realistic. It
can more clearly show how a person move and can track the person’s body in 3D.

There is one thread keep executing the OpenGL functions. So the infinity loop
doesn’t affect reading data from Kinect and process image. This is the advantage of
using multi-thread.

5.8 Multi-threads

A thread of execution is the smallest sequence of programmed instructions that can be
managed independently by a scheduler[32]. In most cases, a thread is a component of
a process and multiple threads can exist within one process, executing concurrently.
Multiple threads will share resources within the same process. The usage of multiple
threads can improve the program performance. In C/C++, there is a third party
library pthread that works both on Linux and Windows. It’s very easy to create a
new thread by calling pthread create().

In the system, one thread only capture image data from Kinect and push data
into 3 image buffers (color image, depth image and mask image). The second thread
convert color image data from CV :: Mat to a customized data structure. The third
thread read color image from the data structure and detect joints location and push
joints information to a joint buffer. The fourth thread read joints information from
joint buffer, depth image from depth buffer and mask image from mask buffer. Then
produce a 3D human body mesh with detected joints and render it to the screen.

Copyright c© Qingguo Xu, 2017.
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Figure 5.4: The whole architecture of the deep learning network.
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Chapter 6 Results

The detected joints are shown in green spots and the red lines are the skelton. Figure
6.1 and Figure 6.2 show some results with and without texture. As shown in these
two figures, the joints detection are very accurate, more clearly when shown without
texture. The system is robust to extreme poses. During the user turning around,
the system can still track the key joints very accurately, while the Kinect usually fail
when the user turns a little bit. Moreover, the joints number are different depend
on the person is frontal face or not, but Kinect cannot separate. So the system can
also decide whether the user is looking at the camera or turning back to the camera
without face detection. The demo video can be found at https://www.youtube.

com/embed/VxLqbrKHH-g

Figure 6.1: Results with texture.

Zhe Cao et al. did some joints detection experiments on two benchmarks: (1) the
MPII human multi-person dataset [1] and (2) the COCO 2016 keypoints challenge
dataset [23]. The following table is from [9] and shows the comparison results. As it
shows, this deep learning network can get more accurate joints detection result than
the other two state-of-art methods in a very short time.
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Figure 6.2: Results without texture.

Method Head Sho Elb Wri Hip Kne Ank mAP s/image

DeeperCut [13] 78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5 485
Iqbal et al. [15] 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1 10

Zhe Cao et al. [9] 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6 0.005

6.1 Compare with Kinect

Figure 6.3 shows the comparison result. In Figure 6.3, Kinect cannot accurately
detect joints like the shoulder, hips and knees. Actually in most cases, Kinect cannot
detect the knees very accurately. Figure 6.4 shows more results and can prove that.
Joints that are not accurately detected are circled out in Figure 6.4. It is clearly that
ankles are even detected outside of human body when the user jump up. When the
user turn around some angle, some joints will not be detected. The second row of
Figure 6.4 shows the joints detection result for the same pose. Compared to Kinect,
my system can detect joints much more accurate even extreme pose.

6.2 Runtime analysis

Although my whole system take advantage of multi-thread and there are total 4
threads in this system: one is for reading data from Kinect; the second one is for
convert the Kinect image data to the network input; the third one is for running
network to detect joints; the last one is running OpenGL to render results. The
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Figure 6.3: Left column is the Kinect result, the middle column is joints detected by
my system, the right column is the 3D mesh

system can process 3 4 frames every second. The rendering procedure is realtime, so
the bottle neck is the joints detection. I run the joints detection part separately on
Linux and it can process 6 frames per second on the same desktop. The Windows
operating system should occupy some GPU resources, which can account for the
performance difference. Since the network support multiple GPU, so if there are
more than one GPU devices, the performance can be better.
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Figure 6.4: Joints detect result. First row are the Kinect outputs. Second row are
my results.
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Chapter 7 Conclusion

In this thesis, I set up a 3D body tracking system, which take advantage of deep
learning and multi-thread programming. The system use Kinect as input device,
detect body joints by applying the deep learning network released in [9] on a color
image which is pixel wise coordinated with a depth map and convert the 2D depth
map to a 3D human model with joints and 3D skeleton. Although Kinect can track
human body in real time, but it cannot detect joints very accurately and cannot
tell whether the user is facing to the camera or not. According to the experiments
results, the system can detect joints more accurate than Kinect and can show 3D
result. Although the joints detection is accurate, it is still the bottleneck of the
system. The whole system can process 3 4 frames per second. If there are more GPU
resources (more GPU devices or more powerful GPU), the performance can be better.

Copyright c© Qingguo Xu, 2017.
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